ACIDS AND BASES

ACIDS:

- l. taste sweet or sour
- 2. changes blue litmus paper red
- 3. all acids have H^{+1} ions or hydronium (H_3O^{+1})
- 4. corrosive to metals
- 5. neutralize bases

ex: sulfuric acid (batteries), HCl (gastric juice), acetic acid (vinegar)

BASES:

- 1. taste bitter
- 2. changes red litmus paper blue
- 3. all bases have OH⁻¹ ions
- 4. neutralize acids
- 5. slippery

ex: ammonium hydroxide (oven cleaner), magneusium hydroxide (MOM), sodium hypochlorite (bleach)

HOW DO YOU ID AN ACID OR BASE?

<u>Indicators:</u>

- 1. litmus paper (hydrion paper)
- 2. natural red cabbage, rose petals, etc.
- 3. weak organic acids:

phenolphthalein (phth) - subtance that turns a solution pink (base) or colorless(acid).

pH scale: used to measure pH (range 0-14)

HOW DO ACIDS AND BASES FORM?

<u>Hydrogen Ions from water -</u> Reaction in which 2 water molecules give ions is SELF IONIZATION. (Water molecules are in constant motion even at room T)

 $\begin{array}{ccc} H_2O <& H_3O^{+1} + OH^{-1} \\ & \text{hydronium} & \text{hydroxide} \end{array}$

 $[\mathrm{H_{3}O^{+1}}]$ has a shortcut ---> $[\mathrm{H^{+1}}]$

In pure water $[H^{+1}] = [OH^{-1}]$ There concentrations both are 1 x 10⁻⁷ M

They are *inversely proportional* to each other.

 K_w (ion-product constant for water) K_w always = 1 x 10⁻¹⁴ M when water dissociates.

 $K_{w} = [\underline{H^{+1}}] \times [\underline{OH^{-1}}]$ equilibrium expression [H₂O]

pH concept

 $[H^{+1}]$ in M is cumbersome, so pH scale is used.

 $\mathbf{pH} = -\mathbf{log} \ [\mathbf{H}^{+1}]$

pH = 0(very acidic) pH = 7

pH = 14 (very alkaline or basic)

BRONSTED-LOWRY ACIDS AND BASES

Theory - written by two Englishmen (Bronsted and Lowry) Defined as: <u>acid</u> - H^{+1} ion donor <u>base</u> - H^{+1} ion acceptor

<u>conjugate acid (CA)</u>- particle formed when a base accepts a H^{+1} ion.

<u>conjugate base (CB)</u> - particle that remains when an acid has donated the base (CB) - particle that remains when an acid has donated the H^{+1} ion.

<u>Conjugate acid-base pair</u>: related by acceptance or donation of a single H⁺¹ ion. **bronsted-lowry acid/conjugate base bronsted-lowry base/conjugate acid**

amphoteric - ex. water -acts as an acid and base

STRENGTHS OF ACIDS AND BASES

strong acid/base - completely dissociates in solution weak acid/base - slightly dissociates in solution

 K_a = fraction of acid that is ionized weak K_a = small K_a (weak acid) strong K_a = large K_a (strong acid)

 K_b = fraction of base that is ionized. weak K_b --> small K_b strong K_b --> large K_b