Buffers and Acid-Base Titrations Worksheet (#3)

- 1. Write ionic equations to how each pair of compounds can serve as a buffer pair.
 - a. H_2CO_3 and NaHCO₃ (the "carbonate" buffer in blood)
 - a. NaH₂PO₄ and Na₂HPO₄ (the "phosphate" buffer inside body cells)
 - b. NH_4Cl and NH_3
- 2. Which buffer would be able to hold a steady pH on the addition of strong acid, buffer 1 or buffer 2? Explain.

Buffer 1: a solution containing 0.10 M $\rm NH_4Cl$ and 1 M $\rm NH_3$

Buffer 2: a solution containing 1 M $\rm NH_4Cl$ and 0.10 M $\rm NH_3$

3. How many grams of sodium acetate, $NaC_2H_3O_2$, would have to be added to 1 L of 0.15 M acetic acid (pKa=4.74) to make the solution a buffer for pH 5.00? (Hint: rearrange HH: pH = pKa + log [base] – log [acid] to solve for log [base] = pH - pKa + log [acid] then take antilog

4. What ratio of molar concentration of NH₄Cl and NH₃ would buffer a solution at pH 9.25?

5. To study the effect of a weakly acidic medium on the rate of corrosion of a metal, a chemist prepared a buffer solution by making it 0.11 M NaC₂H₃O₂ and also 0.090 M HC₂H₃O₂ (pKa = 4.74). What is the pH of this solution?

Titrations

- 1. How many milliliters of 0.100 M HCl are required to neutralize 25.0 mL of 0.100 M Ba(OH)₂?
- 2. Exactly 50.0 mL of HOCl solution of unknown concentration was titrated with 0.100 M NaOH. An end point was reached when 38.5 mL of the base was added. Calculate the molar concentration of the HOCl solution.
- 3. What can make the titrated solution at the equivalence point in an acid-base titration have a pH not equal to 7.00. How does this possibility affect the choice of an indicator?
- 4. When 50.0 mL of 0.10 formic acid (Ka = 1.8×10^{-4}) is titrated with 50.0 mL of 0.10 M NaOH, what is the pH at the equivalence point? (Take into account the change in Volume)