DIMENSIONAL ANALYSIS (DA)

(Factor-label method)
***Using units (dimensions) that are part of a measurement to analyze a problem.
Conversion factor: Ratios of equivalent measurement; Equal to 1 (dimension)
$1 \mathrm{~m}=100 \mathrm{~cm} \quad \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \quad \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \quad$ Both $=1$
ex. Solve $3.6 \mathrm{~m}=$ \qquad cm

5 steps of problem solving

1. Unknown?
2. Known?
3. Relationship?
4. DA or formula
5. Check units/sig figs - does it make sense?

Conversion Factor List (metrics)

Length $-=$ base unit of measurement is meter (m)
$1 \mathrm{~m}=1000 \mathrm{~mm}$
$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~m}=10 \mathrm{dm}$
$1 \mathrm{Km}=1000 \mathrm{~m}$
$1 \mathrm{Hm}=100 \mathrm{~m}$
$1 \mathrm{Dm}=10 \mathrm{~m}$
Refer to printout (The Metric System) for other base units
Multistep DA problems: use more than 1 conversion factor to solve.
ex. $3.560 \mathrm{mg}=$ \qquad Kg

Complex Unit Problems: These are problems with units in the denominator and numerator that may need changed. ex. moles/liter, grams/milliter

Do the following by DA

1. $193 \mathrm{~g}=$? mg
2. $12.6 \mathrm{mg}=$? Kg
3. $0.53 \mathrm{~L}=$? KL
4. $6.27 \mathrm{cL}=$? HL
5. $8.7 \mathrm{Dm}=$? mL
6. $100.5 \mathrm{~L}=$? mL
7. $10,800 \mathrm{~g}=$? cg
