Answers: $1.1 .59 \times 10^{-5} \mathrm{Km} \quad 2.982 \mathrm{cg} \quad 3.13 .455 \mathrm{Kg}$
4. $20.4 \mathrm{~m} / \mathrm{s}$
5. $4.52 \mathrm{Kg} / \mathrm{L}$
6. 6.36 ml
7. 0.0668 g
8. 0.00546 sec
9. 4.15 mol
10. 4.2×10^{-23}
11. 1.1×10^{9}
12. 94.2 mg

Dimensional Analysis

 (Factor-Label Method)Practice problem (level 2)

Use dimensional analysis in solving each of the following problems

1. Convert 15.9 mm to its equivalent measurement in Km .
2. Convert 0.0982 Hg to its equivalent measurement in cg .
3. Convert $13,455 \mathrm{~g}$ to its equivalent measurement in Kg .
4. Convert a speed of $73.5 \mathrm{Km} / \mathrm{hr}$ to its equivalent in m / s.
5. Convert a density of $4.52 \mathrm{~g} / \mathrm{mL}$ to its equivalent in Kg / L
6. The density of iron is $7.86 \mathrm{~g} / \mathrm{mL}$. What volume of iron will have a mass of 50.00 g ?
7. The density of helium gas is $0.178 \mathrm{~g} / \mathrm{L}$. What would be the mass of 375.0 mL of this gas?
8. A particle moving through a gas at a speed of $45.8 \mathrm{~m} / \mathrm{s}$ stirkes one wall of the container, bounces off and hits the other wall 25.0 cm away. How long did it take to go from one wall to the other?
9. A mole of sodium atoms contains 6.02×10^{23} atoms. How many moles would be needed in order to have 25.0
x 10^{23} atoms?
10. A mole of hydrogen atoms contains 6.02×10^{23} atoms. A section of outer space contains 25 atoms. How many moles of hydrogen is this?
11. The speed of light is $3.0 \times 10^{10} \mathrm{~cm} / \mathrm{s}$. Express this speed in $\mathrm{Km} / \mathrm{hr}$.
12. A sample of seawater contains 6.277 g of sodium chloride per liter of solution. How many mg of sodium chloride would be contained in 15.0 mL of this solution?
