ELECTRONS IN ATOMS (Ch4)

DALTON'S atomic theory

J.J. THOMSON'S - "plum pudding"

RUTHERFORD (...opposites attract- why aren't electron's falling into the nucleus?)

NIELS BOHR (electrons are arranged in fixed orbits-shells-energy levels-paths-rings) Therefore, all electrons have a path of fixed ENERGY. INCREASING energy

nucleus

SCHRODINGER (QUANTUM MODEL - THEORY)

"quantum" – excited state

It determines the allowed energies an e- can have and how likely it is to find the e- in a location by the nucleus

The exact path of the electron is not known in this model (unlike Bohr's, but an AREA is. (electron cloud).

Atomic Orbital (clouds, sublevels) – Each has a different shape, which is <u>probably</u> where the e- will be found. How fast is the egoing? Well, not sure about that (Heisenberg Uncertainty Principle).

4 Quantum Numbers: *n = principal quantum number (energy level) *l = sublevel or orbital (s, p, d, f) s - 1 orbital p - 3 orbitals d - 5 orbitals f - 7 orbitals m = magnetic effect s = clockwise or counterclockwise spin of e-

IN the atom,

Ring	Sublevel	Туре	Written	<u>max # e-</u>
n=1	1	S	1s	
n=2	2	s, p	2s, 2p	
n=3	3	s, p, d	3s, 3p, 3d	
n=4	4	s, p, d, f	4s, 4p, 4d, 4f	

ELECTRON CONFIGURATIONS: the address of the electrons of an atom; the way in which electrons are arranged around nuclei.

*Some electrons will have an increase energy, making the entire atom unstable. So, these electrons will sometimes lose ENERGY to become stable.

RULES FOR FILLING ORBITALS:

I. AUFBAU PRINCIPLE = Electrons enter orbitals with the lowest energy first. lowest energy orbital? (sublevel)

s p d f ----increasing energy----> (with some exceptions because of overlap)

For example, notice that 4s is lower in energy than 3d.

- II. PAULI EXCLUSION Only 2 electrons in every orbital
- \uparrow clockwise spin
- \downarrow counterclockwise spin
- \uparrow full orbital \uparrow half full empty

III. HUND'S RULE - One electron fills every orbital (until there are none left) when electrons occupy = energy levels.

ex. Oxygen - 8 electrons

regular notation: $1s^2 2s^2 2p^4$

orbital notation:

<u>Can you answer these?</u> How many e- are in the 1st energy level?

How many e- are in the 2nd energy level?

How many e- needed to be gained before oxygen are "happy?"

Electron Configurations and the Periodic Table

LIGHT AND ATOMIC SPECTRA

Light comes from electromagnetic waves. It travels at a speed of 3.0×10^{10} cm/s.

RADIO-MICROWAVES-IR-VISIBLE-UV-X-GAMMA-COSMIC

DECREASE IN WAVELENGTH

SPECTRUM: Light passes through a prism and the light is separated into ROYGBIV (visible light)

<u>SPECTROSCOPY</u> - Analyzing elements that emit light when heated by passing an electric discharge or current through its gas vapor.

----->

WHITE: ALL LIGHT IS REFLECTED BLACK: ALL LIGHT IS ABSORBED
