DALTON'S atomic theory
J.J. THOMSON'S - "plum pudding"

RUTHERFORD (...opposites attract- why aren't electron's falling into the nucleus?)

NIELS BOHR (electrons are arranged in fixed orbits-shells-energy levels-paths-rings)
Therefore, all electrons have a path of fixed ENERGY.
5
4

3
INCREASING energy
2

1
nucleus

SCHRODINGER (QUANTUM MODEL - THEORY)
"quantum" - excited state
It determines the allowed energies an e-can have and how likely it is to find the $e-$ in a location by the nucleus
The exact path of the electron is not known in this model (unlike Bohr's, but an AREA is. (electron cloud).
Atomic Drbital (clouds, sublevels) - Each has a different shape, which is probably where the e- will be found. How fast is the egoing? Well, not sure about that (Heisenberg Uncertainty Principle).

4 Quantum Numbers:
$*_{n}=$ principal quantum number (energy level)
*l = sublevel or orbital (s, p, d, f)
s-1 orbital
p-3 orbitals
d-5 orbitals
f-7 orbitals
$\mathrm{m}=$ magnetic effect
$\mathrm{s}=$ clockwise or counterclockwise spin of e-

IN the atom, Ring Sublevel Type Written max \# e-				
$\mathrm{n}=1$	1	s	1 s	
$\mathrm{n}=2$	2	$\mathrm{~s}, \mathrm{p}$	$2 \mathrm{~s}, 2 \mathrm{p}$	
$\mathrm{n}=3$	3	$\mathrm{~s}, \mathrm{p}, \mathrm{d}$	$3 \mathrm{~s}, 3 \mathrm{p}, 3 \mathrm{~d}$	
$\mathrm{n}=4$	4	$\mathrm{~s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$	$4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}$	

ELECTRON CDNFIGURATIONS: the address of the electrons of an atom; the way in which electrons are arranged around nuclei.
*Some electrons will have an increase energy, making the entire atom unstable. So, these electrons will sometimes lose ENERGY to become stable.
I. AUFBAU PRINCIPLE = Electrons enter orbitals with the lowest energy first.
lowest energy orbital? (sublevel)
s p d f
----increasing energy---->
(with some exceptions because of overlap)

For example, notice that $4 s$ is lower in energy than Bal.

II. PAULI EXCLUSION - Only 2 electrons in every orbital
\uparrow clockwise spin
\downarrow counterclockwise spin
$\uparrow \downarrow$ - full orbital empty
III. HUND'S RULE - One electron fills every orbital (until there are none left) when electrons occupy = energy levels.
ex. Oxygen - 8 electrons
regular notation: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$
orbital notation:
Can you answer these?
How many e- are in the $1^{\text {st }}$ energy level?
How many e- are in the $2^{\text {nd }}$ energy level?
How many e- needed to be gained before oxygen are "happy?"
Electron Configurations and the Periodic Table

LIGHT AND ATOMIC SPECTRA

Light comes from electromagnetic waves. It travels at a speed of $3.0 \times 10^{10} \mathrm{~cm} / \mathrm{s}$.
RADID-MICROWAVES-IR-VISIBLE-UV-X-GAMMA-CDSMIC

DECREASE IN WAVELENGTH

SPECTRUM: Light passes through a prism and the light is separated into ROYGBIV (visible light)
SPECTROSCOPY - Analyzing elements that emit light when heated by passing an electric discharge or current through its gas vapor.
WHITE: ALL LIGHT IS REFLECTED
BLACK: ALL LIGHT IS ABSORBED

