BEHAVIOR OF GASES

Three Variables: V, T, and P
Pressure:
Increase in gas $=$ increase in gas particles
\downarrow
Gas pressure increases
Double - everything doubles
\uparrow pressure too much, container will bust!!! (exceeds the strength of the container)
Volume:
$\downarrow \mathrm{V}$ by $1 / 2$, then that gas P doubles
\uparrow the volume by doubling, then the gas pressure will reduce by $1 / 2$.
Gases cool when they expand and heat when they are compressed. (ex. Air conditioning system)
Temperature:
Doubling the T of an enclosed gas will double the gas pressure.
Halving the T of an enclosed has decreases the P by $1 / 2$.

Dalton's Law of Partial Pressures: -

$\mathrm{P}_{\text {total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$ etc.
All pressures in a mixture of gases $=$ total P
(at constant V and T)
If you have a tank filled with $\mathrm{N}_{2}, \mathrm{O}_{2}$, and CO_{2} and the pressure of $\mathrm{N}_{2}=10 \mathrm{~atm}$ and $\mathrm{O}_{2}=4 \mathrm{~atm}$, what is the pressure of CO_{2} if the total pressure of the tank $=40 \mathrm{~atm}$?

Dalton's Law of Partial Pressures
$\mathrm{P}_{\text {total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$
$40 \mathrm{~atm}=4+10+x$
26 atm
Boyle's Law:
At constant T for a given mass, the V of a gas varies INVERSELY with P .
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
When pressure decreases, the volume increases.
Ex. Scuba diving: every 10 m of depth, add 1 atm . Scuba equipment provides air to lungs or increases pressure to match the environment.

Charles' Law:

When P is constant, the V of a mass of gas is directly proportional to T . (T - Kelvin)
$\mathrm{K}={ }^{\circ} \mathrm{C}+273$
$\underline{\mathrm{V}}_{1}=\underline{\mathrm{V}}_{2}$
$\mathrm{T}_{1} \quad \mathrm{~T}_{2}$

If a sample of gas occupies 6.8 L at $327^{\circ} \mathrm{C}$, what will be the volume at $27^{\circ} \mathrm{C}$ if the P doesn't change?

Gay-Lussac's Law

At constant V , the P of a gas is directly proportional to T . (T - Kelvin)

$$
\frac{\underline{\mathrm{P}}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}
$$

If a gas has a P of 50.0 mm Hg at 540 K , what will be the P at 200 K if V doesn't change? (V is constant)

Combined Gas Law:

$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

$$
\begin{array}{ll}
\mathrm{T}_{1} & \mathrm{~T}_{2}
\end{array}
$$

At a pressure of $800 . \mathrm{mm} \mathrm{Hg}$ and 25 deg C , a gas has a volume of 450 mL . What will be the volume of this gas under standard conditions?

Ideal Gas Law:

Allows to solve for the number of moles
$\mathrm{PV}=\mathrm{nRT}($ at STP$)$
$\mathrm{P}=\mathrm{atm}(\mathrm{kPa})(\mathrm{mm})$
$\mathrm{V}=\mathrm{L}$
$\mathrm{n}=\mathrm{mol} \quad$ (reminder: $12 \mathrm{~g} \mathrm{CO}_{2} \times \underline{1 \mathrm{~mol} \mathrm{CO}_{2}}$) $44 \mathrm{~g} \mathrm{CO}_{2}$
$\mathrm{R}=0.0821 \frac{\mathrm{~L} * \operatorname{atm}}{\mathrm{~K} * \mathrm{~mol}}$
OR

$8.31 \mathrm{~L}^{*} \mathrm{kPa}$
 K * mol

$T=K$

Ideal Gas Examples

1. When a sphere containing 680 L of He gas is heated from 300 K to 600 K , the pressure increases to 18 atm . How many mol of He does the sphere have?
2. What V will 12.0 g of O_{2} occupy at $25^{\circ} \mathrm{C}$ and P of 0.520 atm ?
3. Calculate the number of L at STP.
A. $2.5 \mathrm{~mol} \mathrm{~N}_{2}$
B. $.600 \mathrm{~g} \mathrm{H}_{2}$
C. $350 \mathrm{~mol} \mathrm{O}_{2}$

Diffusion and Graham's Law:

Effusion vs. Diffusion
Effusion: gas escapes thru tiny openings
**Effusion of a gas is inversely proportional to the square root of its gfm . (gmm)
-His law states that lighter gases will effuse faster than heavier gases.
Ex. Balloons
$\mathrm{O}_{2}, \mathrm{~N}_{2}$, etc (air) He
Which will diffuse faster thru the pores in the balloon causing deflation?
Rate of effusion of $A=M_{B}$
Rate of effusion of $B=M_{\underline{A}}$

