BEHAVIOR OF GASES

Three Variables: V, T, and P

Pressure:

Increase in gas = increase in gas particles \downarrow

Gas pressure increases

Double - everything doubles

↑ pressure too much, container will bust!!! (exceeds the strength of the container)

Volume:

 \downarrow V by 1/2, then that gas P doubles

 \uparrow the volume by doubling, then the gas pressure will reduce by 1/2.

Gases cool when they expand and heat when they are compressed. (ex. Air conditioning system)

Temperature:

Doubling the T of an enclosed gas will double the gas pressure.

Halving the T of an enclosed has decreases the P by 1/2.

Dalton's Law of Partial Pressures: -

 $\mathbf{P}_{\text{total}} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3 \text{ etc.}$

All pressures in a mixture of gases = total P (at constant V and T)

If you have a tank filled with N_2 , O_2 , and CO_2 and the pressure of $N_2 = 10$ atm and $O_2 = 4$ atm, what is the pressure of CO_2 if the total pressure of the tank = 40 atm?

```
Dalton's Law of Partial Pressures

P_{total} = P_1 + P_2 + P_3

40 atm = 4 + 10 + x

26 atm

Boyle's Law:
```

At constant T for a given mass, the V of a gas varies INVERSELY with P.

 $\mathbf{P}_1\mathbf{V}_1 = \mathbf{P}_2\mathbf{V}_2$

When pressure decreases, the volume increases.

Ex. Scuba diving: every 10 m of depth, add 1 atm. Scuba equipment provides air to lungs or increases pressure to match the environment.

Charles' Law:

When P is constant, the V of a mass of gas is directly proportional to T. (T - Kelvin) K = °C + 273

 $\frac{\underline{V}_1}{T_1} = \frac{\underline{V}_2}{T_2}$

If a sample of gas occupies 6.8 L at 327 °C, what will be the volume at 27 °C if the P doesn't change?

Gay-Lussac's Law

At constant V, the P of a gas is directly proportional to T. (T - Kelvin)

$$\underline{\underline{P}}_1 = \underline{\underline{P}}_2 \\ \overline{\underline{T}}_1 \quad \overline{\underline{T}}_2$$

If a gas has a P of 50.0 mm Hg at 540 K, what will be the P at 200 K if V doesn't change? (V is constant)

Combined Gas Law:

 $\frac{\mathbf{P}_1 \mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{P}_2 \mathbf{V}_2}{\mathbf{T}_2}$

At a pressure of 800. mm Hg and 25 deg C, a gas has a volume of 450 mL. What will be the volume of this gas under standard conditions?

Ideal Gas Law: Allows to solve for the number of moles

PV = nRT (at STP)

P = atm (kPa) (mm) V = L n = mol (reminder: 12g CO₂ x <u>1 mol CO₂</u>)44 g CO₂ $R = 0.0821 \frac{L * atm}{K * mol}$ OR

8.31 <u>L*kPa</u> K * mol

T = K

Ideal Gas Examples

1. When a sphere containing 680 L of He gas is heated from 300 K to 600 K, the pressure increases to 18 atm. How many mol of He does the sphere have?

2. What V will 12.0 g of O_2 occupy at 25 °C and P of 0.520 atm?

3. Calculate the number of L at STP.

A. $2.5 \text{ mol } N_2$

- $B.\quad .600 \ g \ H_2$
- C. 350 mol O₂

Diffusion and Graham's Law:

Effusion vs. Diffusion

Effusion: gas escapes thru tiny openings

**Effusion of a gas is inversely proportional to the square root of its gfm. (gmm)

-His law states that lighter gases will effuse faster than heavier gases.

Ex. Balloons

O₂, N₂, etc (air) He

Which will diffuse faster thru the pores in the balloon causing deflation?

 $\frac{\text{Rate of effusion of } A = M_B}{\text{Rate of effusion of } B = M_\Delta}$