I. Stoichiometry Lab: Vinegar and Baking Soda

<u>II. Purpose</u>: To predict the amount of Carbon Dioxide gas that should be produced in a chemical reaction; then calculate the % yield.

 $HC_2H_3O_2 + NaHCO_3 - \rightarrow NaC_2H_3O_2 + H_2O + CO_2$

III. Prelab:

- 1. What type of reaction?
- 2. Name the reactants.
- 3. Name the products.
- 4. What is the formula for calculating % yield?
- 5. Predict what you will see in the reaction.
- 6. Does baking soda behave like a LR or a ER?

IV. Materials: Baking soda (NaHCO₃), Vinegar (HC₂H₃O₂), and 2 plastic cups, scale

V. Procedure:

- 1. Find and record the mass of cup A. With cup A still on the balance, add approximately 5.0 g of baking soda to the cup. Carefully record your result.
- 2. Place cup B on the balance, weigh and record approximately 25.0 g of vinegar. Carefully record your results. Add 2 drops of bromothymol blue and record the color.
- 3. Using a clean dropper pipette, stir, and slowly add vinegar to cup A until the reaction has stopped. **DO NOT** add all of the vinegar, just enough to complete the reaction. Reweigh and record both cup A and B. Calculate the mass of CO₂ that escaped.

VI.	Data:
vı.	Data.

Qualitative Data: After set 2:

After set 3:

Quanti	itative Data:
a)	Mass of Cup Ag
b)	Mass of Cup A and Baking sodag
c)	Calculate mass of baking soda (b-a)g
d)	Mass of Cup B with vinegarg
e)	Mass of Cup B after reactiong
f)	Calculate mass of vinegar poured into Cup A (d-e)g
g)	Mass of Cup A after reactiong
h)	Calculate mass of product after reaction (g-a)g
i)	Calculate baking soda + vinegar (c+f)g
i)	Calculate mass of CO ₂ lost (i-h)

VII. Calculations and Discussion Questions:

- 1. Using the mass of the baking soda, calculate the mass of CO₂ you would expect (theoretical) (hint: g-> mol->g)
- 2. How does this compare to the amount of CO₂ produced?

3. Calculate the percent yield

4. Calculate percent error

- 5. Does baking soda behave like a limiting reagent or excess reagent? How do you know?
- 6. What are some possible sources of error that can contribute to your percent error (think of at least 3 or 4)? What could be done to reduce the percent error?
- 7. Matter is not created or destroyed during a reaction. Does this apply to this lab, even if the mass of the products was less than the mass of all the original compounds? Explain your answer.
- **VIII. References:** Cut and paste your URLs here. Use appropriate citations.