Analysis of Baking Soda Lab

***Instructions for writeup are on the calendar
Theory: \% error formula: theoretical-experimental theoretical
stoichiometry, pH , indicators
Purpose: To determine the mass of sodium hydrogen carbonate in a sample of baking soda using stoichiometry Materials: Baking soda, 3 plastic cups, Soda straw, Balance, Pipets of $\mathrm{HCl}, \mathrm{NaOH}$, and thymol blue

- pH sensor (optional)

Procedure
A. Measure the mass of a clean, dry plastic cup.
B. Using the straw as a scoop, fill one end with baking soda to a depth of about 1 cm . Add the sample to the cup and measure its mass again.
C. Place two HCl pipets that are about $3 / 4$ full into a clean cup and measure the mass of the system.
D. Transfer the contents of both HCl pipets to the cup containing baking soda. Swirl until the fizzing stops. Wait 5-10 minutes to be sure the reaction is complete. Measure the mass of the two empty HCl pipets in their cup again.
E. Add 5 drops of thymol blue to the plastic cup.
F. Place two full NaOH pipets in a clean cup and measure the mass of the system.
G. Add NaOH slowly to the baking soda $/ \mathrm{HCl}$ mixture until the pink color just disappears. Measure the mass of the NaOH pipets in their cup again.

Data: Make a table prior to lab by reading the procedure and figurin out what important measurements are needed.

Calculations/Discussion: Using your experimental data, record the answer to the following questions below your data table.

1. Write a balanced equation for the reaction between baking soda $\left(\mathrm{NaHCO}_{3}\right)$ and HCl .
2. Calculate the mass in grams of the baking soda. (theoretical) (Step B- Step A)
3. Calculate the total mmol of $1 M \mathrm{HCl}$.

Note: Every gram of HCl contains 1 mmol .
(Step C-Step D) $\times 1.00 \mathrm{mmol} / \mathrm{g}$
4. Calculate the total mmol of 0.5 M NaOH .

Note: Every gram of NaOH contains 0.5 mmol .
(Step F- Step G) x $0.500 \mathrm{mmol} / \mathrm{g}$
5. Calculate the mmol of HCl that reacted with the baking soda. Note: The NaOH measure the amount of HCl that did not react.
(Step 3- Step 4)
6. Calculate the mass of the baking soda from the reaction data. (experimental)
($0.084 \mathrm{~g} / \mathrm{mmol}$ x Step 5)
7. Calculate the percent error of the experiment.
(Step 2 - Step 6) $\quad \times 100 \%$
Step 2

Conclusion:

Resources: Any Internet URL websites or textbook pages

