BONDING PRACTICE FREE RESPONSE

- 1. Use the principles of bonding and molecular structure to explain the following statements.
 - a) The boiling point of argon is -186 deg. C, whereas the boiling point of neon is -246 deg. C.
 - b) Solid sodium melts at 98 deg. C, but solid potassium melts at 64 deg. C.
 - c) More energy is required to break up a CaO(s) crystal into ions than to break up a KF(s) crystal into ions.
 - d) Molten KF conducts electricity, but solid KF does not.
- 2. The Carbonate ion CO₃²⁻ is formed when carbon dioxide, CO₂, reacts with slightly basic cold water.
 - a) (i) Draw the Lewis electron dot structure for the carbonate ion. Include resonance forms if they apply.
 - (ii) Draw the Lewis electron dot structure for the carbon dioxide.
 - b) Describe the hybridization of carbon in the carbonate ion.
 - c) (i) Describe the relative lengths of the three C-O bonds in the carbonate ion.
 - (ii) Compare the average length of the C-O bonds in the carbonate ion to the average length of the C-O bonds in carbon dioxide.

3.

Substance	Boiling Point (deg. C)	Bond Length (A)	Bond Strength (kcal/mol)
H ₂	-253	0.75	104.2
N ₂	-196	1.10	226.8
O ₂	-186	1.21	118.9
Cl ₂	-34	1.99	58.0

- a) Explain the differences in the properties given in the table above for each of the following pairs.
 - (i) The bond strengths of N₂ and O₂
 - (ii) The bond lengths of H₂ and Cl₂
 - (iii) The boiling points of O₂ and Cl₂
- b) Use the principles of molecular bonding to explain why H₂ and O₂ are gases at room temperature, while H₂O is a liquid at room temperature.
- 4. H₂S, SO₄²-, XeF₂, ICI₄⁻
- a) Draw a Lewis electron dot diagram for each of the molecules listed above.
- b) Use the valence shell electron-pair repulsion (VSEPR) model to predict the geometry of each of the molecules.
- 5. Use the principle of bonding and molecular structure to explain the following statements.
- a) The angle between the N-F bonds in NF₃ is smaller than the angle between the B-F bonds in BF₃.
- b) $I_2(s)$ is insoluble in water, but it is soluble in carbon tetrachloride.
- c) Diamond is one of the hardest substances on Earth.

d) HCI has a lower boiling point than either HF or HB r