Ch. 16.6 Weak Acids
-- most acids are weak
-- For a weak acid HX...

-- acid-dissociation constant $K_{a}=$
large K_{a} :
small K_{a} :
The \% of a weak acid that is ionized is given by the equation:

For organic acids (containing only C, H, and O) the "donated" H was connected to...

EX. A 0.020 M niacin solution has pH 3.26 .
(a) What \% of the acid is ionized?
(b) What is K_{a} ?

EX. If K_{a} for niacin is 1.6×10^{-5}, find the pH of a $\mathbf{0 . 0 1 0} \mathrm{M}$ niacin solution.
(READ: Strengths of Acids printout)
\% ionization of a weak acid at a given temperature...does what?

Rationale:
Recall that

$$
\% \text { ion. }=\frac{\left[H^{+}\right] \text {at eq. }}{[H X] \text { orig. }} \times 100
$$

for the weak acid $H X(a q)$

If we increase [HX], particle [] increases. System doesn't "want" higher [] of particles, so it shifts LEFT to reduce the number of particles (one vs. two). [H^{+}] will increase, but not as much as [HX]. Therefore, \% ionization decreases.
-- The opposite is true if we dilute the solution.

REVIEW: pH of a mixture of Weak Acids
*Which is the dominant equilibrium? (When that is solved, the problem reduces to a pH of what
is effectively 1 species in solution)
EX. Calculate the \% of HF molecules ionized in a 0.10 M HF solution. ($\mathrm{K}_{\mathrm{a}}=6.8 \times \mathbf{1 0}^{-4}$)

Ch. $16 \operatorname{Sec} 7$ Bases:

Weak Bases

$$
K_{b}=
$$

*Weak bases are often nitrogen-containing molecules ("amines") or anions.

Example:

Review of SB: Totally dissociate in solution; What are the strong bases?
pH of a WB
ICE diagram (use them!!!)

EX. What is the [NH_{3}] in a solution having pH 9.35?

Ch. 16 sec 6 -p. 688 Polyprotic acids - like sulfurous acid, $\mathrm{H}_{2} \mathrm{SO}_{3}$ - have more than one ionizable $\mathrm{H}+$.

$$
\begin{aligned}
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HSO}_{3}^{-}(\mathrm{aq}) \\
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{3}^{2-}(\mathrm{aq})
\end{aligned}
$$

$$
\left(K_{a 1}=1.7 \times 10^{-2}\right)
$$

$$
\left(\mathrm{K}_{\mathrm{a} 2}=6.4 \times 10^{-8}\right)
$$

-- Usually, $\mathrm{K}_{\mathrm{a} 2}$ is at least 1000 X smaller than $\mathrm{K}_{\mathrm{a} 1}$. In such cases, one can calculate [H^{+}]and pH based only on $\mathrm{K}_{\mathrm{a} 1}$ (i.e., ignore $\mathrm{K}_{\mathrm{a} 2}$ and pretend you have a monoprotic acid).

Monoprotic versus Polyprotic acids

- MONOPROTIC with a single H^{+}ion to donate.

In general, acids with more than one H^{+}ion availible to be donated are called POLYPROTIC acids

- DIPROTIC acids have two H^{+}ions which it can donate.
- e.g. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{CO}_{3}$
- TRIPROTIC acids have three H^{+}ions which it can donate.
- e.g. $\mathrm{H}_{3} \mathrm{PO}_{4}$

Polyprotic acids undergo a stepwise-dissociation in water, in which one H^{+}ion is lost at a time.

EX. Find the pH of a 0.0037 M carbonic acid solution. $\left(\mathrm{K}_{\mathrm{a} 1}=4.3 \times 10^{-7}, \mathrm{~K}_{\mathrm{a} 2}=5.6 \times 10^{-11}\right)$

