Ch. 16.6 Weak Acids

-- most acids are weak -- For a weak acid HX... $HX(aq) = H^+(aq) + X^-(aq)$ -- <u>acid-dissociation constant</u> $K_a =$

> large K_a: small K_a:

The % of a weak acid that is ionized is given by the equation:

For organic acids (containing only C, H, and O) the "donated" H was connected to...

EX. A 0.020 M niacin solution has pH 3.26.

(a) What % of the acid is ionized?

(b) What is Ka?

EX. If K_a for niacin is 1.6 x 10⁻⁵, find the pH of a 0.010 M niacin solution. (READ: Strengths of Acids printout)

% ionization of a weak acid at a given temperature...does what?

Rationale:

Recall that % ion. = $\frac{[H^+]at \ eq.}{[HX] \ orig.} \times 100$ for the weak acid HX(aq)

If we increase [HX], particle [] increases. System doesn't "want" higher [] of particles, so it shifts LEFT to reduce the number of particles (one vs. two). [H⁺] <u>will</u> increase, but not as much as [HX]. Therefore, % ionization decreases.

-- The opposite is true if we dilute the solution.

REVIEW: pH of a mixture of Weak Acids

*Which is the dominant equilibrium? (When that is solved, the problem reduces to a pH of what

is effectively 1 species in solution)

EX. Calculate the % of HF molecules ionized in a 0.10 M HF solution. ($K_a = 6.8 \times 10^{-4}$)

Review of SB: Totally dissociate in solution; What are the strong bases?

pH of a WB ICE diagram (use them!!!)

EX. What is the [NH₃] in a solution having pH 9.35?

<u>Ch.16 sec 6-p. 688</u> Polyprotic acids – like sulfurous acid, H₂SO₃ – have more than one ionizable H+.

-- Usually, K_{a2} is at least 1000X smaller than K_{a1} . In such cases, one can calculate [H⁺]and pH based only on K_{a1} (i.e., ignore K_{a2} and pretend you have a monoprotic acid).

Monoprotic versus Polyprotic acids

• **MONOPROTIC** with a single H⁺ ion to donate.

In general, acids with more than one H⁺ ion available to be donated are called **POLYPROTIC** acids

- **DIPROTIC** acids have two H⁺ ions which it can donate.
 - e.g. H_2SO_4 and H_2CO_3

TRIPROTIC acids have three H⁺ ions which it can donate.
e.g. H₃PO₄

Polyprotic acids undergo a **stepwise-dissociation** in water, in which one H⁺ ion is lost at a time.

EX. Find the pH of a 0.0037 M carbonic acid solution. ($K_{a1} = 4.3 \times 10^{-7}$, $K_{a2} = 5.6 \times 10^{-11}$)