COVALENT BONDS

The sharing of bonds is done by pairing up valence e-. STRUCTURAL formulas - show arrangements of molecules and ions. ex. H--H H₂ (empirical) pair of e-

Single Covalent Bond: 1 pair of e- shared between two atoms. ex. H + H ----> H H (electron dot notation)

BRINCIHOF - Elements that exist as diatomic compounds have covalent bonding.

F + F ---- F F or F--F

.. = unshared pair of e-

According to the octet rule, GROUP 6 elements will want to form a Double Covalent Bonds. (2 shared pairs of e-) ex. O

O O (stronger bonding) Triple Covalent Bond: It has 3 pairs of shared e-. (group 5)

N N :N:::N: :N N: <u>COVALENT COMPOUNDS</u>

Electron dot formulas for molecules of compounds can be written.

ex. ammonia		NH_3				
H H H	+	N	>			
carbon dioxide		CO_2				
C + O			>	:0	С	0:

0

VALENCE SHELL ELECTRON-PAIR REPULSION THEORY (VSEPR) -using bond angle and geometric shapes to describe the type of covalent bonding present in a molecule

When e-prs. repel, molecules will adjust their shapes so that the pairs are as far apart as possible.

ex. CH4

Unshared e- prs. will repel strongly from paired e-. The unshared will push the shared together.

ex. NH₃

Electron Groups		Arrangement Molecular of Groups Shape		Example		
T	otal	Bonding	Lone	Contract Michael Contract	10000000	A CONTRACTOR OF A
	2	2	0	Linear	Linear	CO2 0000
	3	3	0	Trigonal planar	Trigonal planar	
		2	1		Bent (or angular)	D ₃ D ₃
	4	4	0	Tetrahedral	Tetrahedral	
		3	1		Trigonal pyramidal	PF 3 F
		2	2		Bent (or angular)	H 20 H 20

Exceptions to VSEPR or octet rule:

ex. B, S, and P (When they are the central atom, they may not fulfill the octet rule) B - < 8S, P - > 8

RESONANCE: two or more equally valid e-dot structures can be written for a molecule. ex. O_3 ozone EXCEPTIONS TO OCTET RULE

NO₂ (17 e-)

Why is it an exception? because it has a lone electron due to the magnetic effect.

ELECTRIC CHARGES ON ELECTRONS <u>Magnetic effect</u> - electrons spinning in opposite directions $(\uparrow\downarrow)$ - cancel each other

paired e- DIAMAGNETIC (even number of e-) unpaired e- PARAMAGNETIC (odd number of e-)

If electrons have a paramagnetic spin, then they have a strong attraction to an <u>external</u> magnetic field, not internal.

COORDINATE COVALENT BONDS

This bond is formed when an atom contributes BOTH BONDING E-. It's indicated by an arrow pointing to the atom which has nothing to contribute. -Occurs in almost all polyatomic ions ex. NH_4^{+1}

 H^{+1} +

POLARITY

NON POLAR COVALENT BOND - Diatomic elements will form a bond where e- are shared equally. ex. F 2

POLAR COVALENT BOND - When 2 different atoms are joined by a bond and e- are not shared equally. The higher the electronegativity value, the greater the ability for an atom to attract e- to itself.

SHOW POLARITY

 δ --> represents a partial charge

Which is more electronegative? p.151 or trend?

CH_4

Consult a reference table (similar to p.) to find out how polar the bond is: moderately polar covalent Bond type Electronegativity

	_
differen	ice
Nonpolar covalent 0-0.4	
Moderately polar covalent 0.4-1.0	
Very polar covalent 1.0-2.0	
Ionic >2.0	

POLAR MOLECULES: One end of the bond is negative and one end is positive

Dipole - 2 poles (charged regions)

<u>Linear molecules</u> - bond polarities cancel each other (opposite directions) ex. CO₂ <u>Bent</u> - polarities don't cancel ex. H₂O

INTERMOLECULAR ATTRACTIONS -responsible for the physical state of a molecular compound (S, L, G) <u>FORCES OF ATTRACTION INCLUDE:</u>

1. Van Der Waals - weakest attractions;

<u>2 kinds</u>
a. dispersion forces - caused by motion of e These forces increase as the number of e- increase. ex. Halogens (change of state as you go down a group)

b. dipole interactions - electrostatic attractions between poles (+, -) ex. H₂O

liquid - weak intermolecular attraction solid - strong """"

2. Hydrogen bonding - strongest intermolecular force;

found in proteins

-usually 1 or more prs. of unshared e- exist around the central atom.

DIFFERENCES BETWEEN IONIC AND COVALENT COMPOUNDS

Characteristics	Ionic compound	Covalent compound
Representative unit	Formula unit	Molecule
Bond formation	Transfer between one or more electrons between atoms	Sharing of electron pairs between atoms
Type of elements	Metallic and nonmetallic	Nonmetallic
Physical State	Solid	Solid, Liquid, or Gas
Melting Points	High (usually above 300 C)	Low (usually below 300 C)
Solubility in water	Usually high	High to Low
Electrical conductivity of aqueous solution	Good conductor	Poor to nonconducting