CHEMICAL QUANTITIES
 The Mole

Mole - an amount of substance that represents 6.02×10^{23} representative particles of that substance.

Representative Particles - the smallest particle of a substance (atom, ion or formula unit, molecule) that has the same physical and chemical properties.

Amadeo Avogadro - gets credit for Avogadro's number 6.02×10^{23}

A mole of a diatomic element $\left(\mathrm{N}_{2}\right)$ - a molecular compound - contains 6.02×10^{23} molecules of nitrogen.

Diatomic elements: BrINCIHOF

$1 \mathrm{~mol}=6.02 \times 10^{23}$ atoms, ions, or molecules
Sample problems:

1. How many moles are contained in 1.20×10^{23} molecules CO_{2} ?
1.20×10^{24} molecules $\mathrm{CO}_{2} \times \quad \underset{6}{1 \mathrm{~mol} \mathrm{CO}_{2}}$ 6.02×10^{23} molecules CO_{2}
$1.99 \mathrm{~mol} \mathrm{CO}_{2}$

More problems with Avogadro's number:
2. How many molecules are in $.400 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{5}$?
3. How many moles are contained in 4.50×10^{23} atoms of Ni ?
4. How many moles is each of the following?
A. $\quad 4.81 \times 10^{24}$ atoms Cu
B. $\quad 1.50 \times 10^{23}$ molecules NH_{3}

MOLAR MASS: Refers to the mass of a substance in 1 mole. (gam, gmm, gfm)

1. gram atomic mass (gam) - number of g of an ELEMENT that is $=$ to the atomic mass (mass \# - rounded atomic mass)
ex. O gam is 16 g
$1 \mathrm{~mol} \mathrm{Cr}=$ \qquad g ?
2. gram molecular mass (gmm) - the mass of 1 mole of that MOLECULAR COMPOUND. Ex. 1 mol of $\mathrm{SO}_{3}=80 \mathrm{~g}$

S $1 \mathrm{X} \quad 32=32$
O $3 \times 16=\underline{48}$
3. gram formula mass (gfm) - the mass of 1 mole of an IONIC COMPOUND.

Ex. $1 \mathrm{~mol} \mathrm{KCl}=74 \mathrm{~g}$
1 mol of ammonium dichromate $=\quad \mathrm{g}$?

1 mol of aluminum sulfate $=\quad \mathrm{g}$?
Mole-Mass conversion problems:

1. $\quad 10.0 \mathrm{~mol} \mathrm{Cr}=\quad \mathrm{g} \mathrm{Cr}$
$10.0 \mathrm{~mol} \mathrm{Cr} \times 52 \mathrm{~g} \mathrm{Cr}=520 . \mathrm{g} \mathrm{Cr}$ 1 mol Cr
2. $72.0 \mathrm{~g} \mathrm{Ar}=$ \qquad mol Ar
$72.0 \mathrm{~g} \mathrm{Ar} \times \frac{1 \mathrm{~mol} \mathrm{Ar}}{40 \mathrm{~g} \mathrm{Ar}}=1.80 \mathrm{~mol} \mathrm{Ar}$ 40 g Ar
$1 \mathrm{~mol}=$ g of a substance

According to Avogadro's Hypothesis, we can have another relationship between the mole and gas particles. However, the conditions of STP must be in effect:

STP - standard temperature ($0^{\circ} \mathrm{C}$) and standard pressure at 1 atmosphere (atm). - sea level
MOLAR VOLUME - At STP, 1 mol of any gas occupies a molar volume of 22.4 L .
Sample problems: (Molar Volume conversions)

1. What is the volume at STP of a gas that has $5.40 \mathrm{~mol} \mathrm{O}_{2}$?
$5.40 \mathrm{~mol} \mathrm{O}_{2} \times \quad \underline{22.4 \mathrm{~L} \mathrm{O}_{2}=121 \mathrm{LO}_{2}}$ $1 \mathrm{~mol} \mathrm{O}_{2}$
2. Assuming STP, how many moles are in this volume of gas: $89.6 \mathrm{~L} \mathrm{SO}_{2}$?

$$
89.6 \mathrm{~mol} \mathrm{SO}_{2} \quad \mathrm{x} \quad \frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{22.4 \mathrm{~L} \mathrm{SO}_{2}}=4.00 \mathrm{~mol} \mathrm{SO}_{2}
$$

3. What is the density of He at STP?

$$
\begin{aligned}
& \mathrm{D}=\mathrm{m} / \mathrm{v} \\
& \mathrm{D}=2 \mathrm{~g} / 22.4 \mathrm{~L}=.089 \mathrm{~g} / \mathrm{L} \text { of } \mathrm{He}
\end{aligned}
$$

1 mol of a gas $=22.4 \mathrm{~L}($ at STP $)$

MULTISTEP MOLE PROBLEMS

Use the MOLE ROAD for help
What is the mass in g of an atom of Ni ?

More practice multistep problems:

1. Find the number of molecules in 60.0 g of NO_{2}.
2. Find the volume (L) of 3.24×10^{22} molecules of carbon dioxide.
3. Assuming STP, find the mass of $18.0 \mathrm{~L}^{\text {of }} \mathrm{CH}_{4}$.
4. Find the mass of 1 molecule of aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$.
5. Find the volume (L) of 835.00 g of SO_{3} at STP.

Answers:

1. $\quad 7.85 \times 10^{23}$ molecules NO_{2}
2. $\quad 1.20 \mathrm{~L} \mathrm{CO}_{2}$
3. $\quad 12.8 \mathrm{~g} \mathrm{CH}_{4}$
4. $3 \times 10^{-22} \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
5. $\quad 234 \mathrm{~L} \mathrm{SO}_{3}$

PERCENT COMPOSITION: The \% by mass of each element in a compound.
$\%$ mass $=$ gam $/ \mathrm{gmm}$ or $\mathrm{gfm} \times 100$
total composition $=100 \%$
Sample problems:
A. Calculate the $\%$ composition of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$.

1. Find the gam of each element
2. Add the gam's together to get the gmm.
3. Gam/gmm x $100=\%$ of each element in the compound.

C $\underline{24} \times 100=80 \%$ 30

H $\underline{6} \times 100=20 \%$ 30
B. 29.0 g Ag combines completely with 4.30 g of S . What is the $\% \mathrm{Ag}$ and $\% \mathrm{~S}$ in the compound?
$29.0 \mathrm{~g} \mathrm{Ag}+4.30 \mathrm{~g} \mathrm{~S}=33.3 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}$

2 chemical formula calculations:

1. Empirical formula - the lowest whole-number ratio of the elements in a compound. Ex. $\mathrm{Pb}_{2} \mathrm{~S}_{4}=\boldsymbol{\rightarrow} \mathrm{PbS}_{2}$ lead (IV) sulfide

Ex. Calculate the empirical formula of the compound with the following \% composition: 79.8\% C $20.2 \% \mathrm{H}$

1. erase $\%$ and replace with g . (because $1 \mathrm{~mol}=$ gam, $\mathrm{gmm}, \mathrm{gfm}$)
2. Find number of mol and divide the number of mol of each element by the lowest number.
3. The whole number = number of atoms of each element.
$79.8 \mathrm{~g} \mathrm{C} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{C}}{12 \mathrm{~g} \mathrm{C}}=6.65 \mathrm{~mol} \mathrm{C} / 6.65=1$
$20.2 \mathrm{~g} \mathrm{Hx} \underline{1 \mathrm{~mol} \mathrm{H}}=20.2 \mathrm{~mol} \mathrm{H} / 6.65=3$
1 g H
Answer: CH_{3}
4. Molecular Formula - It is determined by the gfm and the empirical formula (efm) of a compound. It will NOT be in the lowest ratio.
Ex. Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Sample problem: molecular formula
What is the molecular formula if $\mathrm{CH}_{4} \mathrm{~N}$ has a gfm of
60 g ?
1 1. efm of $\mathrm{CH}_{4} \mathrm{~N}=30 \mathrm{~g}$
2 2. gfm/efm $=60 / 30=2$ (multiply this by the number of atoms in $\mathrm{CH}_{4} \mathrm{~N}$)
3 3. $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$ (molecular formula)

