Properties of Solutions Ch. 13 p. 395

Solute + Solvent = Solution ↓ ↓ s, I or g A substance that that is dissolved that solute is dissolved in (usually water)

Effects of Solution Formation

- 1. Agitation
- 2. Temperature
- Physical state of solute (solid - powder dissolves quicker than crystal)

Solubility - S p. 402

Solvation (dissolving) = Desolvation (crystals)

- occurs when the solution is saturated

Saturated - more solute in solvent; (concentrated) Unsaturated - Less solute in solvent; (dilute)

p. 404

S = g of solute

100 g of solvent (at particular T) \rightarrow 1 mL = 1 g = 1 cc = 1 cm³

Miscible	VS.	Immiscible
\downarrow		\downarrow
Liquids dissolve in each other		Liquids are insoluble in each other

Factors of Solubility - p. 408

For most substances (most s and I), solubility will increase as T increases. In some, however, the reverse occurs.

For gases, solubility decreases with an increase in T always. Ex. \mbox{CO}_2 in soda

Henry's Law: Solubility of a liquid is directly proportional to the P of the gas above the liquid. (p.407)

*So as P decreases, so does S decreases.

$S_1 = S_2$		
$\overline{P_1}$ $\overline{P_2}$		
T is constant S - g/L P - atm		
Molarity - p. 412		
- how dilute or concentrated a solution is		
M = molarity (# of mol of solute dissolved in 1 L of solution)		
M = mol of solute		
L of solution X g x <u>1 mol</u> gfm		
0.4M NaCl (dilute) 1.0 M NaCl (conc.)		
Make a solution containing 0.90 g NaCl per 100 mL of solution. What is its M?		
$M = \underline{mol} .100 L$		
$\frac{L}{.90 \text{ g NaCl x 1 mol NaCl}} = .0155 \text{ mol}$		
Percent Solutions		
- concentration of solute can be expressed as % solution by volume.		
% by volume (v/v)= <u>Volume of solute</u> x 100 Volume of solution		
If alcohol is dilutes to 300 mL and we started with 200 mL, what is the % by volume of alcohol?		
% by volume = <u>200 mL</u> x 100 = 67% 300mL (alcohol by v/v)		
To dissolve solids in liquids, we sometimes use % by mass (of solute) in a solution. % by mass/volume = <u>mass(g)_</u> x 100_ volume (mL usually 100 mL) How many g of AgNO ₃ do you need to prepare 3.0 L of 3.0 % AgNO ₃ (m/v) solution?		
$3.0g \times 1000 \text{ mL} = 30 \text{ g/L}$ (solubility)		

100 mL 1 L

$$3.0 L x 30 g = 90 g \text{ of } AgNO_3$$

Making Dilutions

moles of solute doesn't change when a solution is diluted.

 $\mathsf{M}_1 \: x \: \mathsf{V}_1 \:=\: \mathsf{M}_2 \: x \: \mathsf{V}_2 \qquad \qquad \text{(V-units are L)}$

How would you prepare 600 L of 0.50 M magnesium nitrate from a stock solution of 3.0 M magnesium nitrate?