TYPES OF pH PROBLEMS

1. If given $[H^{+1}]$, & you want to solve for pH, then plug into $pH = -log [H^{+1}]$

Follow these keystrokes, In sci calc., in 2.5, EE or EXP 4, +/-, log In graphing, (-), log, 2.5 EE (-) 4 =

ex. $[H^{+1}] = 2.5 \times 10^{-4}$ what is the pH?

 $pH = -log [2.5 x 10^{-4}]$ pH = 3.6 (acidic)

2. If given pH and you want to find the $[H^{+1}]$ then:

Follow these keystrokes, In sci calc., 3.6, +/-, INV or 2nd func, log In graphing, 2nd func, log (means: 10^x or antilog, (-), 3.6

ex. WORK BACKWARD $10^{(-pH)} = [H^{+1}]$ pH = 3.6 3.6 = -log [H^{+1}]

 $2.5 \times 10^{-4} = [H+]$

3. If given [OH-], plug it into pOH= -log[OH-] ----just like example 1

4. If given pOH and you want to find the [OH-]----just like example 2

5. *pH* + *pOH* = 14

NOTES:

SUBSTANCE	рН	рОН	[H+]	[OH -]
Baking soda	8.4			
Bleach			3.16 x 10 ⁻¹³	
Coffee			1.0 x 10 ⁻⁵	
blood				2.0 x 10 ⁻⁷
Hand soap	9.5			
Juice (tomato)		10.0		
Great Salt Lake				1.0 x 10 ⁻¹⁰
Shampoo		5.9		
Stomach acid	1.8			
Seawater		6.0		