THE pH BOX

All four of the measurements are different ways to express exactly the same condition. The Kw of water, the dissociation constant, is a natural number amazingly close to $1 \mathrm{E}-14$. That is, when you multiply the hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$by the hydroxide ion concentration $\left[(\mathrm{OH})^{-}\right]$in pure water at near room temperature, the number is $1 \mathrm{E}-14$. If you know the $\left[(\mathrm{OH})^{-}\right]$, you know the $\left[\mathrm{H}^{+}\right]$and visa-versa. These two measurements are not the same scale, but they are two different measurements of the same thing. The pH is just the negative \log of the $\left[\mathrm{H}^{+}\right]$and the pOH is just the negative \log of the $\left[(\mathrm{OH})^{-}\right]$. The final leg of the box is the relationship between the pH and pOH , and that is the easiest one. $\mathrm{pH}+\mathrm{pOH}=14$ because this is the exponential form of the Kw equation.

