Worksheet – Calculations Involving Specific Heat

- 1. For $q = m \cdot c \cdot \Delta T$: identify each variable by name & the units associated with it
- 2. Heat is not the same as temperature, yet they are related. Explain how they differ.
 - a. Perform calculations using $(q = m \cdot c \cdot \Delta T)$ b. Determine if it's endothermic or exothermic

 Gold has a specific heat of 0.129 J/(gx°C). How many joules of heat energy are required to raise the temperature of 15 grams of gold from 22°C to 85°C? 	2. An unknown substance with a mass of 100 grams absorbs 1000 J while undergoing a temperature increase of 15°C. What is the specific heat of the substance?
Endothermic or exothermic?	
	Endothermic or exothermic?
 If the temperature of 34.4g of ethanol increases from 25°C to 78.8°C, how much heat has been absorbed by ethanol? The specific heat of ethanol is 2.44 J/(gx°C) 	3. Graphite has a specific heat of 0.709 J/ (gx°C). If a 25g piece of graphite is cooled from 35°C to 18°C, how much energy was lost by the graphite?
Endothermic or exothermic?	Endothermic or exothermic?
 4. Copper has a specific heat of 0.385 J/ (gx°C). A piece of copper absorbs 5000 J of energy and undergoes an energy change from 100°C to 200°C. What is the mass of the copper? 	 5. 45 grams of an unknown substance undergoes a temperature increase of 38°C after absorbing 4172.4 J. What is the specific heat of the substance? Look at the table on page 513 of your book and identify the substance.
Endothermic or exothermic?	Endothermic or exothermic?
 A 40. g sample of water absorbs 500 Joules of energy. How much did the water temperature change? The specific heat of water is 4.18 J/(gx°C). 	 If 335g of water at 65.5°C loses 9750 J of heat, what is the final temperature of water? Liquid water has a specific heat of 4.18 J/(gx°C).
Endothermic or exothermic?	Endothermic or exothermic?