Stoichiometry -Study of the mathematics of chemical reactions

Calculation of Atomic Masses

How many isotopes of the element exist and how much does each contribute?

Ex. chlorine has an atomic weight of 35.45 amu because it is
 composed of 76% of Cl-35 (34.96 amu) and $24 \% \mathrm{Cl}-37$ (36.97 amu). How?
atomic mass unit (amu) - Mass of 1 atom; precise definition is that it is one twelfth of the mass of an unbound atom of carbon-12 (12C) at rest and in its ground state.

Mass Spectrometer is the best instrument for measuring the masses of atoms and ions; It is used because it is much easier and more precise to compare masses of atoms and molecules (determine relative masses) than to measure their absolute masses.

MOLE MOLE MOLE MOLE MOLE MOLE MOLE MOLE

Relationships of the Mole

Remember $1 \mathbf{m o l}=\mathbf{~} \mathbf{g} . .$.
The average mass of 1 atom of a substance expressed in amu is the same number as the mass of 1 mol of a substance expressed in grams. So, $1 \mathrm{~g}=\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}} \mathrm{amu}$
ex. In 5.56 mg there are how many molecules of Fr - 12 (freon). $\mathrm{C} \mathrm{Cl}_{2} \mathrm{~F}_{2}$

Answer: $2.77 \times 10^{19 \text { molecules }}$

Molar Mass = 1 mol of substance

Molecular wt Formula Wt
CHCl_{3} (chloroform)
aluminum carbonate (all ionic compounds)

Molar Volume $=1 \mathbf{~ m o l}=22.4 \mathrm{~L}$ (@ STP)
How many L are in 3.0 molecules of CO_{2} ?
ex. potassium ferricyanide $-\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$

Answer: $329.27 \mathrm{~g} / \mathrm{mol}$

Determining the Formula of a Compound

- Empirical Rhyme

Percent to mass
Mass to mole
Divide by small
Times till whole
N-87. 4\%
H-12.6\%
NH_{2}

- molecular formula - Divide molar mass by the empirical formula mass; it will give the \# of empirical f.u. in the actual molecule.
ex. mass of the empirical formula $-\mathrm{NH}_{2}(16.026 \mathrm{~g})$
mass of compound -32.05 g SO, units of empir. formula in compound $-32.05 \mathrm{~g} / 16.026=2$

$$
\mathrm{N}_{2} \mathrm{H}_{4} \text { (hydrazine) }
$$

Stoichiometry:Using the mole ratio of substances to solve problems
Start off with - A BALANCED EQUATION
butane + oxygen -----> carbon dioxide + water
$\mathrm{C}_{4} \mathrm{H}_{10}+13 / 2 \mathrm{O}_{2}---->4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

Rules for determining amount of substance reacting or formed in chemical equations:

1. Balance the equation.
2. Decide what quantity of each substance is given.
3. Decide what quantity you want to calculate. Represent it with a question mark directly under the substance (one line down if a mole quantity, two lines down if a laboratory quantity).
4. Complete the diagram with arrows by going from the known laboratory quantity to moles, then to moles of unknown quantity, and finally to laboratory quantity of the unknown. (Step(s) can be omitted if either or both the given quantity and the unknown quantity are moles.)
5. Calculate each quantity following the steps in the diagram.

How many liters (at STP) of NH_{3} are needed to react with 80.0 g of O_{2} ?
1)

$$
\begin{aligned}
& 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2}-->4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \\
& \text { (step 2) }
\end{aligned}
$$

2)

Answer: 44.8 liters NH_{3} (STP)
ex. $\mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+\mathrm{O}_{2}$ (steps to solving problems - p. 109)
If a 100.00 g sample of potassium chlorate decomposes, how many g of oxygen will be given off?

Limiting Reagents: - All reactants in a chemical rxn may not be used.
LR - limiting reagent
ER - excess reagent

To determine which reactant is the LR, we calculate the amount of product expected from each rxt.
AND the rxt that gives the smallest yield limits the amount of product formed (LR)
(study guide - p. 65 - look at ex. 3.9A)

- Check to be sure you have a balanced equation
- Convert the amount of reagent one that was given into the amount of product that you could form if that reagent was completely consumed.
- Convert the amount of reagent two that was given into the amount of product that you could form if that reagent was completely consumed.
- Determine which of the answers in step 2 and 3 produced the LEAST amount of product and that will be your limiting reagent. Also the LEAST amount of product will be your theoretical yield.

Example: $\mathbf{6}$ grams of H_{2} and 160 grams of O_{2}. What is the limiting reagent and what is the theoretical

 yield in grams? If $\mathbf{2 0}$ grams of water is actually formed, what would be the Percent Yield?$\mathrm{H}_{2}+\mathrm{O}_{2}---->\mathrm{H}_{2} \mathrm{O}$

1. check for balance

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2}--->2 \mathrm{H}_{2} \mathrm{O}
$$

2. Convert grams of given to moles of given H2

6 grams $\mathrm{H}_{2} \mathrm{X} 1$ mole $\mathrm{H}_{2} / 2$ grams $\mathrm{H}_{2}=3$ moles H_{2}
3. Determine the moles of $\mathrm{H}_{2} \mathrm{O}$ formed if all 3 moles of H_{2} was consumed: We know from the balanced equation (coefficients) that: 2 moles H_{2} produces 1 mole $\mathrm{H}_{2} \mathrm{O}$ or 2 moles $\mathrm{H}_{2}=2$ mole $\mathrm{H}_{2} \mathrm{O}$ so ...

3 moles $\mathrm{H}_{2} \mathrm{X} 2$ mole $\mathrm{H}_{2} \mathrm{O} / 2$ moles $\mathrm{H}_{2}=3$ moles $\mathrm{H}_{2} \mathrm{O}$ produced
4. Convert the grams of O_{2} given to moles of O_{2}

160 grams O_{2} X 1 mole $\mathrm{O}_{2} / 32$ grams $\mathrm{O}_{2}=5$ moles O_{2}
5. Determine the moles of $\mathrm{H}_{2} \mathrm{O}$ formed if all 5 moles of O_{2} was consumed:

We know from the balanced equation that for every 1 mole of O_{2} that is consumed then 2 moles $\mathrm{H}_{2} \mathrm{O}$ is produced or 1 mole $\mathrm{O}_{2}=2$ moles $\mathrm{H}_{2} \mathrm{O}$ so 5 moles of $\mathrm{O}_{2} \mathrm{X} 2$ moles $\mathrm{H}_{2} \mathrm{O} / 1$ mole $\mathrm{O}_{2}=10$ moles $\mathrm{H}_{2} \mathrm{O}$
6. Compare the answers in step 3 and 5 and the one that produced the LEAST amount of water is the limiting reagent:
H_{2} produced 3 moles water and O_{2} produced 10 moles $\mathrm{H}_{2} \mathrm{O}$ so...
H_{2} is the limiting reagent and 3 moles of $\mathrm{H}_{2} \mathrm{O}$ is the theoretical yield.
7. Convert the moles of $\mathrm{H}_{2} \mathrm{O}$ theoretical yield to grams $\mathrm{H}_{2} \mathrm{O}$

1 mole $\mathrm{H}_{2} \mathrm{O}=18$ grams
3 moles $\mathrm{H}_{2} \mathrm{OX} 18$ grams $\mathrm{H}_{2} \mathrm{O} / 1$ mole $\mathrm{H}_{2} \mathrm{O}=54$ grams $\mathrm{H}_{2} \mathrm{O}$
8. Determine the Percent Yield - The Actual Yield was given as 20 grams

Percent Yield $=($ Actual Yield $/$ Theoretical Yield $) 100=(20$ grams $/ 54$ grams $) 100=37 \%$

MOLARITY: Measures concentration of a solution

moles of solute/L of solution
ex. Calculate the molarity of a solution prepared by dissolving 1.56 g of HCl (g)in enough water to make 26.8 mL of solution.

Stoichiometry Problem Involving Molarity:

What is the molar concentration of AgNO_{3} in a solution if titration of 25.00 mL of the solution with .300 M NaCl requires 37.05 mL of the NaCl solution to reach the endpt?
$\mathrm{AgNO}_{3}+\mathrm{NaCl}----\rightarrow$
$0.03705 \mathrm{~L} \mathrm{NaCl} \times 0 . \underline{300} \mathrm{~mol} \mathrm{NaCl} \times \underline{1 \mathrm{~mol} \mathrm{AgNO}_{3}}=0.1111{\mathrm{~mol} \mathrm{AgNO}_{3}}^{2}$

$$
1 \mathrm{~L} \mathrm{NaCl} \quad 1 \mathrm{~mol} \mathrm{NaCl}
$$

$M=\mathrm{mol} / \mathrm{L}$
$0.01111 \mathrm{~mol} \mathrm{AgNO}_{3}=0.445 \mathrm{M} \mathrm{AgNO}_{3}$
$0.02500 \mathrm{LAgNO}_{3}$

How many milliliters of 0.5 M hydrochloric acid is required to react with an excess of zinc metal to produce 98.5 L of hydrogen gas @ STP. [Assume 100\% yield]

Step 1) Write a balanced chemical equation

$$
\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)
$$

Step 2) Add given information to equation

$$
\begin{array}{cc}
\mathrm{Zn}(\mathrm{~s}) \\
\text { "excess" } & 2 \mathrm{HCl}(\mathrm{aq}) \underset{\mathrm{xmL} \text { of } 0.5 \mathrm{M}}{\rightarrow} \mathrm{ZnCl}_{2}(a q)
\end{array}+\mathrm{H}_{2}(\mathrm{~g}) \quad \text { 98.5 L @ STP }
$$

Step 3) Solve for number of moles of HCl needed

$$
x \mathrm{~mol} \mathrm{HCl}=98.5 \mathrm{LH}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{22.4 \mathrm{LH}_{2}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)=8.8 \mathrm{~mol} \mathrm{HCl}
$$

Step 3) Solve for volume of HCl

$$
\begin{aligned}
M=\frac{\mathrm{mol}}{\mathrm{~L}} \Rightarrow 0.5 M= & \frac{8.8 \mathrm{~mol} \mathrm{HCl}}{x L} \\
& x=17.6 \mathrm{~L}\left(\frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}\right) \Rightarrow 17,600 \mathrm{~mL} \text { of } 0.5 \mathrm{M} \mathrm{HCl}
\end{aligned}
$$

