Self Test for Unit 5: Chemical Quantities and Calculations

Part I: Multiple Choice with explanation: Choose the best answer and give an explanation that supports your choice

1. How many oxygen atoms are in 10 formula units of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$? (a) 10 atoms $\mathrm{O} \quad$ (b) 7 atoms O (c) 70 atoms O (d) 120 atoms O
2. The mass of a mole of NaCl is the: (a) gram formula mass. (b) gram atomic mass. (c) gram molecular mass. (d) atomic mass.
3. What is the molar mass of MgCl_{2} ? (a) 59.8 g (b) 95.3 g (c) 125.8 g (d) 76.4 g
4. A large weather balloon filled with helium has a volume of $7.00 \times 10^{2} \mathrm{~L}$ at STP. Which expression should be used to find the mass of helium in the balloon? (a) $22.4 \mathrm{~L} \times \underline{\mathrm{g}} \mathrm{He}$ (b) $\underline{7.00 \mathrm{x}}$ $\underline{10^{2}} \times 4 \mathrm{~g} \mathrm{He}$ (c) $\underline{22.4 \mathrm{~L} / \mathrm{mol} \times 4 \mathrm{~g} \mathrm{He}}$
mol mol $\mathrm{L} \quad \mathrm{mol} \quad 7.00 \times 10^{2} \mathrm{~L} \mathrm{~mol}$
(d) $\frac{7.00 \times 10^{2} \mathrm{~L}}{22.4 \mathrm{~L}} 4 \mathrm{~g} \mathrm{He}$ $22.4 \mathrm{~L} / \mathrm{mol} \mathrm{mol}$
5. Which of the following is not an empirical formula? (a) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \quad$ (c) $\mathrm{N}_{2} \mathrm{H}_{4}$ (d) $\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}$
6. Which expression represents the percent by mass of nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
(a) (14.0
$\mathrm{g} / 80.0 \mathrm{~g}) \times 100 \%$
(b) $(28.0 \mathrm{~g} / 80.0 \mathrm{~g}) \times 100 \%$
(c) $(80.0 \mathrm{~g} / 14.0 \mathrm{~g}) \times 100 \%$
(d) $80.0 \mathrm{~g} / 28.0 \mathrm{~g}) \mathrm{x}$ 100\%
7. The empirical formula of a compound is $\mathrm{CH}_{2} \mathrm{~F}$. The gram formula mass of this compound is 66.0
g . The molecular formula of the compound is:
(a) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~F}_{4}$
(b) $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~F}_{4}$ (c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~F}_{2}$
(d) $\mathrm{CH}_{2} \mathrm{~F}$
8. In a chemical reaction: (a) mass is conserved. (b) atoms are conserved. (c) moles are conserved. (d) both mass and atoms are conserved.
9. If 3.0 moles of HCl are consumed in the reaction below, how many moles of FeCl_{3} are produced? $6 \mathrm{HCl}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ (a) 0.50 mol (b) $1.0 \mathrm{~mol} \quad$ (c) 2.0 mol (d) 4.0 mol
10. Which of the following is a correct interpretation of this balanced equation?
a) 2 grams $\mathrm{Al}+3$ grams $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2$ grams $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3$ grams Pb
b) 2 atoms $\mathrm{Al}+3$ units $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2$ units $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3$ atoms Pb
c) 2 moles $\mathrm{Al}+3$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2$ moles $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3$ moles Pb
d) both b and c
11. Given the equation $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$, how many moles of $\mathrm{H}_{2} \mathrm{O}$ would be required to produce 2.5 moles of O_{2} ? (a) 2.0 mol (b) 2.5 mol (c) 4.0 mol (d) 5.0 mol
12. Given the balanced equation $16 \mathrm{HCl}+2 \mathrm{KMnO}_{4} \rightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$, if 1.0 mol of KMnO_{4} reacts, how many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced? (a) 0.50 mol (b) 2.0 mol (c) 4.0 mol (d) 8.0 mol
13. Given the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, if 13 L of O_{2} react at STP , how many liters of NO_{2} are produced? (a) 6.5 L (b) 3.2 L (c) 26 L (d) 13 L
14. Given the reaction $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$, if 2.0 mol Zn and 5.0 mol HCl are allowed to react: (a) Zn is the limiting reagent. (b) HCl is the limiting reagent. (c) 1.0 mol of ZnCl_{2} is produced. (d) 1.0 mol of H_{2} is produced.
15. The quantity of heat that raises the temperature of 1 gram of pure water $1^{\circ} \mathrm{C}$ is:
(a) the heat capacity. (b) 1 joule. (c) 1 calorie. (d) the heat of combustion.
16. As perspiration (the system) evaporates from your skin, cooling your body, this process is said to be: (a) endothermic. (b) exothermic. (c) isothermic. (d) none of these.
17. When the container of a chemical reaction feels hot to the touch the reaction is called (a) endothermic. (b) exothermic. (c) isothermic. (d) none of these.
18. Given the equation $\mathrm{I}_{2}(\mathrm{~s})+62.4 \mathrm{~kJ} \rightarrow \mathrm{I}_{2}(\mathrm{~g})$, which of the following is true: (a) The reaction is exothermic. (b) $\Delta \mathrm{H}=+62.4 \mathrm{~kJ}$ (c) $\Delta \mathrm{H}=-62.4 \mathrm{~kJ}$ (d) The reaction releases heat.
19. If a thermochemical equation has $\Delta \mathrm{H}<0$, this equation is said to be: (a) exothermic (b) endothermic (c) absorbing heat from the surroundings. (d) isothermic.
20. The symbol $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ is called: (a) the molar heat of fusion. (b) the heat of a reaction. (c) the enthalpy change of fusion. (d) the standard heat of formation.
Part 2: Problems - Solve the following problems in the space provided. Remember to develop a system of showing your work, especially if you choose not to follow the problem solving method presented in class, your partial credit depends on this.
21. Find the mass of each of the following:
a. $\quad 3.65 \times 10^{-2} \mathrm{~mol} \mathrm{~K}_{2} \mathrm{SO}_{4}$
b. $\quad 2.61 \times 10^{24}$ molec. $\mathrm{H}_{2} \mathrm{O}_{2}$
c. $\quad 0.060 \mathrm{~L}^{\text {of } \mathrm{CH}_{4} \text { gas at STP }}$
d. $\quad 3.70 \times 10^{22}$ atoms of Kr
22. Make the necessary conversion in the following:
a. How many molecules are in 25.0 g of $\mathrm{H}_{2} \mathrm{O}$?
b. How many milliliters do 2.56×10^{21} atoms of He occupy at STP?
c. How many formula units are present in a 1.34 nanogram sample of MgCl_{2} ?
23. What is the density of $\mathrm{N}_{2} \mathrm{O}$, a gas at STP?
24. What is the percent composition of each of the elements in the following compounds?
a. $\mathrm{Cr}_{2} \mathrm{O}_{3}$
b. Experimental evidence of a compound indicates that a 18.35 g of the compound contains 5.74 g of tin and the rest is chlorine.
25. Determine the empirical formula of the compound with the percent composition of: $29.1 \% \mathrm{Na}, 40.5 \% \mathrm{~S}$, and $30.4 \% \mathrm{O}$.
26.

A compound is $85.7 \% \mathrm{C}$ and $14.3 \% \mathrm{H}$. If the gram molecular mass of the compound is 42.0 g , find the molecular formula of the compound.
7. $\quad 2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Answer the following questions based on this reaction.
a. How many liters of oxygen (at STP) are required to burn 4.84 grams of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ completely?
b. How many grams of CO_{2} are produced when 88.6 g of O_{2} are reacted with an excess of butane?
8. How many molecules of chlorine are produced when 40.0 g of salt are split by electrolysis according to this equation?

$$
2 \mathrm{NaCl}(\mathrm{~s}) \quad \rightarrow 2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

9.

$$
2 \mathrm{Al}(\mathrm{~s})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{AlPO}_{4}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

10. Referring to problem 9 , what is the limiting reagent
11. If a what is the limiting reagent?
12. In problem \#11 give the maximum
13. Fill in the missing pieces of information in the following blanks and state whether the reaction is endothermic or exothermic.
(a) $2 \mathrm{~K}(\mathrm{~s})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{KBr}(\mathrm{s})+784 \mathrm{~kJ}$

$$
\Delta \mathrm{H}=
$$

\qquad
(b) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\longrightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$

$$
\Delta \mathrm{H}=286 \mathrm{~kJ}
$$

14. How much heat is absorbed when 55.3 grams of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ solid are dissolved in a beaker full of water? $\left(\Delta \mathrm{H}_{\text {soln }}=25.7 \mathrm{~kJ} / \mathrm{mol}\right)$
15. Calculate the amount of heat produced when 125 g of methane, CH_{4}, burns in excess air according to the following equation.

$$
\mathrm{CH}_{4}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+890.2 \mathrm{~kJ}
$$

