Self Test for Unit 5: Chemical Quantities and Calculations

<u>**Part I:**</u> <u>Multiple Choice with explanation:</u> Choose the best answer and give an explanation that supports your choice

- How many oxygen atoms are in 10 formula units of Al₂(SO₄)₃? (a) 10 atoms O
 (b) 7 atoms O
 (c) 70 atoms O
 (d) 120 atoms O
- 2. The mass of a mole of NaCl is the: (a) gram formula mass. (b) gram atomic mass. (c) gram molecular mass. (d) atomic mass.
- 3. What is the molar mass of $MgCl_2$? (a) 59.8 g (b) 95.3 g (c) 125.8 g (d) 76.4 g
- 4. A large weather balloon filled with helium has a volume of 7.00 x 10² L at STP. Which expression should be used to find the mass of helium in the balloon? (a) <u>22.4 L x 4 g He</u> (b) <u>7.00 x</u> <u>10² x 4 g He</u> (c) <u>22.4 L/mol x 4 g He</u>
 - mol
 mol
 L
 mol
 $7.00 \ge 10^2 L$ mol

 (d)
 $7.00 \ge 10^2 L \ge 4 \ge He$ $7.00 \ge 10^2 L \ge 10^2 L$ $7.00 \ge 10^2 L$

22.4 L/mol mol

- 5. Which of the following is *not* an empirical formula? (a) Na_2SO_4 (b) C_6H_5Cl (c) N_2H_4 (d) $Sn_3(PO_4)_4$
- 6. Which expression represents the percent by mass of nitrogen in NH₄NO₃? (a) (14.0 g/80.0 g) x 100% (b) (28.0 g/80.0 g) x 100% (c) (80.0 g/14.0 g) x 100% (d) 80.0 g/28.0 g) x 100%
- 7. The empirical formula of a compound is CH₂F. The gram formula mass of this compound is 66.0 g. The molecular formula of the compound is: (a) C₄H₈F₄ (b) C₄H₄F₄ (c) C₂H₄F₂ (d) CH₂F
- 8. In a chemical reaction: (a) mass is conserved. (b) atoms are conserved. (c) moles are conserved. (d) both mass and atoms are conserved.
- 9. If 3.0 moles of HCl are consumed in the reaction below, how many moles of FeCl₃ are produced? 6HCl + Fe₂O₃ → 2FeCl₃ + 3H₂O (a) 0.50 mol (b) 1.0 mol (c) 2.0 mol (d) 4.0 mol
- 10. Which of the following is a correct interpretation of this balanced equation? $2 \text{ Al(s)} + 3 \text{ Pb(NO}_3)_2(\text{aq}) \rightarrow 2 \text{ Al(NO}_3)_3(\text{aq}) + 3 \text{ Pb(s)}$
 - a) 2 grams Al + 3 grams Pb(NO₃)₂ \rightarrow 2 grams Al(NO₃)₃ + 3 grams Pb
 - b) 2 atoms Al + 3 units $Pb(NO_3)_2 \rightarrow 2$ units Al $(NO_3)_3 + 3$ atoms Pb
 - c) 2 moles Al + 3 moles Pb(NO₃)₂ \rightarrow 2 moles Al(NO₃)₃ + 3 moles Pb
 - d) both b and c
- 11. Given the equation $2H_2O \rightarrow 2H_2 + O_2$, how many moles of H_2O would be required to produce 2.5 moles of O_2 ? (a) 2.0 mol (b) 2.5 mol (c) 4.0 mol (d) 5.0 mol

- 12. Given the balanced equation 16HCl + 2KMnO₄ → 2KCl + 2MnCl₂ + 5Cl₂ + 8H₂O, if 1.0 mol of KMnO₄ reacts, how many moles of H₂O are produced? (a) 0.50 mol (b) 2.0 mol (c) 4.0 mol (d) 8.0 mol
- 13. Given the reaction 2NO(g) + O₂(g) → 2NO₂(g), if 13 L of O₂ react at STP, how many liters of NO₂ are produced? (a) 6.5 L (b) 3.2 L (c) 26 L (d) 13 L
- 14. Given the reaction Zn + 2HCl → ZnCl₂ + H₂, if 2.0 mol Zn and 5.0 mol HCl are allowed to react:
 (a) Zn is the limiting reagent.
 (b) HCl is the limiting reagent.
 (c) 1.0 mol of ZnCl₂ is produced.
 (d) 1.0 mol of H₂ is produced.
- 15. The quantity of heat that raises the temperature of 1 gram of pure water 1°C is: (a) the heat capacity. (b) 1 joule. (c) 1 calorie. (d) the heat of combustion.
- 16. As perspiration (the system) evaporates from your skin, cooling your body, this process is said to be: (a) endothermic. (b) exothermic. (c) isothermic. (d) none of these.
- 17. When the container of a chemical reaction feels hot to the touch the reaction is called (a) endothermic. (b) exothermic. (c) isothermic. (d) none of these.
- 18. Given the equation $I_2(s) + 62.4 \text{ kJ} \rightarrow I_2(g)$, which of the following is true: (a) The reaction is exothermic. (b) $\Delta H = +62.4 \text{ kJ}$ (c) $\Delta H = -62.4 \text{ kJ}$ (d) The reaction releases heat.
- 19. If a thermochemical equation has $\Delta H < 0$, this equation is said to be: (a) exothermic (b) endothermic (c) absorbing heat from the surroundings. (d) isothermic.
- 20. The symbol ΔH_f^{0} is called: (a) the molar heat of fusion. (b) the heat of a reaction. (c) the enthalpy change of fusion. (d) the standard heat of formation.

<u>**Part 2: Problems**</u> – Solve the following problems in the space provided. Remember to develop a system of showing your work, especially if you choose not to follow the problem solving method presented in class, your partial credit depends on this.

- 1. Find the mass of each of the following:
 - a. $3.65 \ge 10^{-2} \mod K_2 SO_4$
 - b. 2.61×10^{24} molec. H₂O₂
 - c. $0.060 \text{ L of } \text{CH}_4 \text{ gas at } \text{STP}$
 - d. 3.70×10^{22} atoms of Kr
- 2. Make the necessary conversion in the following:
 - a. How many molecules are in 25.0 g of H_2O ?
 - b. How many **milliliters** do 2.56×10^{21} atoms of He occupy at STP?
 - c. How many formula units are present in a 1.34 nanogram sample of MgCl₂?
- 3. What is the density of N_2O_2 , a gas at STP?

- 4. What is the percent composition of each of the elements in the following compounds?
 a. Cr₂O₃
 - b. Experimental evidence of a compound indicates that a 18.35 g of the compound contains 5.74 g of tin and the rest is chlorine.
- 5. Determine the empirical formula of the compound with the percent composition of: 29.1% Na, 40.5% S, and 30.4% O.
- 6. A compound is 85.7% C and 14.3% H. If the gram molecular mass of the compound is 42.0 g, find the molecular formula of the compound.
- 7. $2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2 + 10H_2O(g)$ Answer the following questions based on this reaction.
 - a. How many liters of oxygen (at STP) are required to burn 4.84 grams of butane (C_4H_{10}) completely?
 - b. How many grams of CO₂ are produced when 88.6g of O₂ are reacted with an excess of butane?
- 8. How many molecules of chlorine are produced when 40.0g of salt are split by electrolysis according to this equation?

$$2NaCl(s) \rightarrow 2Na(s) + Cl_2(g)$$

9.

$$2Al(s) + 2H_3PO_4(aq) \rightarrow 2AlPO_4(s) + 3H_2(g)$$

- 10. Referring to problem 9, what is the limiting reagent
- 11. If a what is the limiting reagent?
- 12. In problem #11 give the maximum

13. Fill in the missing pieces of information in the following blanks and state whether the reaction is endothermic or exothermic.

(a)
$$2K(s) + Br_2(g) \rightarrow 2KBr(s) + 784kJ$$

$$\Delta H = _$$
(b) $H_2O(1) + _ \rightarrow H_2(g) + \frac{1}{2}O_2(g)$

$$\Delta H = 286 \text{ kJ} _$$

- 14. How much heat is absorbed when 55.3 grams of NH_4NO_3 solid are dissolved in a beaker full of water? ($\Delta H_{soln} = 25.7 \text{ kJ/mol}$)
- 15. Calculate the amount of heat produced when 125 g of methane, CH_4 , burns in excess air according to the following equation.

$$CH_4 + 3O_2 \rightarrow CO_2 + 2H_2O + 890.2 \text{ kJ}$$